
AD-Ai52 174 MULTIPLE ARRAiYNPROCESSORS FOR OCEAN ACOUSTIC PROBLEMS i/I
(U) VALE UNV NEN HAVEN CT DEPT OF COMPUTER SCIENCE
M H SCHULTZ FEB 85 YALEU/DCS.'RR-363 N8B8i4-82-K-@184

UNCLASSIFIED F/ 2/ NL

-.. 8

L- __

II *40 I11112

111111125

MICROCOPY RESOLuTION TEST CHART

S. : , . • . . . ,

.II

Lf

Multiple Array Processors for Ocean Acoustic Problems

Martin H. Schultz

Research Report YALEU/DCS/RR-363
February 1985

0

" This documt hs been aPP oved F E
LA. fe publi.c rejleoseand sale; its

distribution is unlirnied....i.. 0 4 1985 r

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

85 03 13 241

J

Abstract. The current revolution in computer hardware and architecture is having a major impact
on many disciplines. In this paper we examine some of the implications of this revolution for some
problems in computational underwater acoustics. In particular we consider the application of some
model multi-array processor systems to the numerical solution of the three-dimensional parabolic
appro:imation, [2, 3] for a discussion of parabolic approximations in underwater acoustics.

Our goal is to illuminate some of the issues involved in taking advantage of the current advances
in hardware technology to produce an extraordinarily fast, inexpensive, and portable computer
system for simulating underwater acoustic wave propagation.

I

Multiple Array Processors for Ocean Acoustic Problems

Martin H. Schultz

Research Report YALEU/DCS/RR-363
February 1985

This work was supported in part by ONR grant N00014-82-K-0184 and in part by a joint study
with IBM/Kingston.

,- • .' " , -. '. -. . .• - *- i " '

1. Introduction

The current revolution in computer hardware and architecture is having a major impact on
many disciplines. In this paper we examine some of the implications of this revolution for some
problems in computational underwater acoustics. In particular we consider the application of some
model multi-array processor systems to the numerical solution of the three-dimensional parabolic
approximation, [2, 31 for a discussion of parabolic approximations in underwater acoustics.

Our goal is to illuminate some of the issues involved in taking advantage of the current advances
in hardware technology to produce an extraordinarily fast, inexpensive, and portable computer
system for simulating underwater acoustic wave propagation. We refer to the work of Fred Tappert
[4] for a discussion of some of the issues involved in using a single array processor system, which
he calls PESOGEN (Parablic Equation Solution GENerator), for these problems.

A-1

.. , .•

" ." . • , ",I ' . - . " ° - ' , " o . ° " , ° ° - "° "

Page 2

2. A Brief Overview of Architecture

SHARED

HOST BUS (B) MEMORY

A typical multi-array processor system would look something like above sketch where the bus
has a total bandwidth of B bytes/second, AP represents an array processor which can communicate
with the bus at b bytes/second and compute at s multiply/add pairs per second. In Table 1 we
present a list of contemporary array processors, their dates of introduction, their megaflop ratings,
and their approximate costs.

YEAR NAME MEGAFLOPS APPROXIMATE COST
(IN THOUSANDS OF DOLLARS)

1982 FPS-164 11 300
1984 MARS-432 30 100
1985 ZIP-3232 20 20

Table 1

From Table 1 we can see a clear trend of more power for less money (also in a smaller package).

We consider a number of contemporary interconnect schemes

(1) VAX:

UNIBUS B - 1.2 megabytes/secVAX HOST
b =0.3 megabyvtes/sec

FPS-164J

6 "- ." . ' . . " " ' " ' - : . . : - . ' - * i '

Page 3

(2) APTEC DPS-2400 (a fast UNIBUS):

shared

B = 24 megabytes /sec memory

b =3 megabytes

AP AP

(3) YALE SHARED-BULK-MEMORY (ELI CIRCUS):

AP AP40 megabytes/sec

HOST B = 24 megabytes

This yields an effective bandwidth of 20 megabytes/sec between every pair of adjacent array pro-
cessors in parallel. This system has been implemented at Yale with a single FPS-164 and a single
(bulk) memory containing 32 megabytes and expandable to 796 megabytes. It is being implemented
by Enrico Clementi at IBM with an IBM mainframe host and at least 10 FPS-164s.

It is currently very fashionable to talk about having special purpose devices integrated into
computer systems. In particular, we know how to build very fast FFT devices which could be

MEMORY FFT BOX speed - s

BUS (B)

CONTROL UNIT A A
ALU AL

• mm , ° . - . •

Page4

integrated into a typical array processor as above (ALU stands for arithmetic-logic unit). Suppose
we wish to do complex FFTs based on n = 1024 points. We assume that, the data resides in
memory, must be moved to the FFT box and then moved back to memory after being transformed.
Furthermore, there is little point to building the FFT box unless this process is compute bound
(as distinct from I/O or data movement bound), i.e..

16n 4n log n

B - s

data movement computation
(4 byte complex arithmetic)

or < -logn=2.5 or s<2.5x B.
B 4

This inequality tells us that for this situation there is little point in making the FFT box arbitrarily

fast. In fact, an upper bound for its speed is provided in terms of the bus bandwidth.

Our general approach is based on what we call the ELI CIRCUS ALGORITHM DESIGN
4 DISCIPLINE, i.e., we think of a model architecture that generalizes the one based on the

AP direct interconnect with
bandwidth of c megabytes/sec

hared memory

B mnegabytes/sec

broadcast bus of bandwidth
B megabytes/sec

Yale Shared-Bulk-Memory as shown in the sketch above. What is important for the inventor and
implementor of parallel algorithms is the overall simple structure of this target architecture. This

6

.

Page 5

structure is sufficiently simple to allow the formulation and analysis of parallel algorithms. The
exact details of the hardware implementation are completely unimportant at this level. Indeed we
envision having an automatic system for mapping algorithms for the ELI CIRCUS onto specific
implementations.

3. A Computation Intensive Ocean Acoustics Problem

We consider the problem of modelling the propagation of a single frequency underwater acoustic
!. signal by means of a 3-dimensional parabolic approximation [2] such an approximation corresponds

to the equation

(1) u, = !ko(n-k.

[2, 3]. Algorithms for solving Eq. (1) are known to be very computation intensive so that the

application of a multi-array processor is quite appropriate.

We consider two basic algorithms for computing the solution to Eq. (1)

1. The split step Fourier method due to Fred Tappert, [4], which involves two 2-dimensional FFTs
per range step; and

2. The explicit finite difference approximations due to Tony Chan, Ding Lee, and Long-jun Shen,
[1], which involves a matrix-vector product with a 5-diagonal matrix per range step.

We now describe implementations and analyze the performance of these two algorithms on an
ELI CIRCUS architecture.

4. The Split Step Fourier Method.

Since most of the work for the split step algorithm is in the 2-dimensional FFTs, we limit our
discussion to that. In particular, we consider a 2-dimensional FFT on a 2" x 2" mesh using a k

processor ELI CIRCUS machine. The general idea is to use an algorithm of the following form.
2D-FFT ALGORITHM FOR CIRCUS (k) :

1. Partition the mesh into k equal vertical pieces (assuming k divides 2n)

2. Map each piece into an AP;

3. Do the 1-dimensional FFTs in each AP;

F 4. Map the transformed data back into shared memory;

5. Partition the mesh into k equal horizontal pieces (transpose done in hardware);

6. Map each piece into an AP;

7. Do the 1-dimensional FFTs in each AP;

S. .Map the transformed data back into shared memory.

To apply this type of approach to the split step Fourier algorithm we take N 2" points in
both the z (depth) and 0 (angle) variables and assume the number of processors, k. divides N. In
each of steps 3 and 7 of the above algorithm, each processor does

N
(1) -. 1-dimensional FFTs on N points which requires

. -.: . .- . .• - : . " ..' ..

Page 6

N 4NlogN
(2) k seconds.

We can accomplish steps 4-6 by a variety of means. For example, by having each processor use the
broadcast bus to broadcast its transformed data to all the others which would take

____ 8N 2

(b +k=kU + - seconds,

where T is the data transfer startup time or latency. Summing two times the bound in (2) and (3)
we get a total time of

8N 2 8N 2 log N seconds,
(4) kc + e s ,

total
time

8N 2

b

k
Figure 1

which is graphed in Figure 1 as a function of k. If B > b, we can use the shared memory to more
effectively move the data. In fact, steps 4-6 would require

16N
2

(5) kT + - seconds.

This yields a total time of

16N 2 8N 2 log N(6) kT + --- + ks seconds,

which is less than (4) if 2b < B.

Still another way of accomplishing the data movement in steps 4-6 is to use the direct nearest
neighbor connections as follows. We base this discussion on the model with the local shared memory
previously described, i.e., the Yale Shared-Bulk-Memory.

PIPELINE DATA MOVEMENT ALGORITHM (k):

For j=k-1 to 1 step -1:

*0 1. Each AP writes T W data to its right shared memory

Page 7

2. Each AP reads the data irom its left shared memory

Using this approach the total time is given by

1Tk 34,! 2 + :Y2 log N

(7)- -- + seconds.(7) 2T: + 2c ks "

yielding a graph which is basically similar to that displayed in Figure 1.

It is clear from Figure 1 that as we add more nodes the running time will eventually increase
and may eventually exceed the running time with one node.

Let's examine some typical cases for N = 1024.

1. VAX and FPS-164s: T=3x 10-3, b=0.3x 106, s= 10x 106

8x 10 6 Sxl106 xl10
TOTAL TIME = 3000k + 0 X 106 10 X 106 X 1 seconds0.3 x 106 10 x 106x k

8
-24 + - seconds.

k

Thus for k = 2; TOTAL TIME 28 seconds

k = 3; TOTAL TIME 26.3 seconds

k = oc; TOTAL TIME 24 seconds

However, we remark that for a single processor system the TOTAL TIME = 8 seconds because
there is no data movement.

2. APTEC BUS and FPS-164s: T= 3 x 10- 3, b=3x 0. q= 10 x 106

TOTAL TIME - 2.4 + seconds

Thus for k = 2; TOTAL TIME 6.4 seconds

k = 4; TOTAL TIME , 4.4 seconds

k = oc: TOTAL TIME ; 2.4 seconds

There is an interesting question about the use of the shared memory on the APTEC BUS. Suppose
b can h}ave any value between 3 and 12 megabytes/sec. The question is how hard we should tn

shared
memory

24 megabytes/sec

b

AP

I.
.7 ... i - • ." " ". -

Page S

to make I- large. If k -b > 24. e.g.. if k > 8 then using the shared memory approach we have from
equation (6) that 168

TOTAL TIME (MEMORY) ;t 24 + k seconds.

while using only the broadcast bus we have from equation (4) that

8 8
TOTAL TIME (BUS) Pe + - seconds.

Thus if k b > 24. we should use the shared memory approach and there is no advantage in making
b>3.

5. An Explicit Finite Difference Scheme

We now switch to discussing an explicit 5-point finite difference approximations to the para-
bolic equation. If we block the unknowns by lines then we can step the solution out in range by
using the explicit scheme

un+l = Au n + Dun-1 + gn

where A and D are N-block tridiagonal (with an additional two off diagonal blocks because of the
periodicity in the 0 variable). If we partition the data into k equal vertical slices each of which is
assigned to a processor then for each range step each processor must send its left-most vertical line
of data to its left-hand neighbor and its right-most vertical line of data to its right-hand neighbor.
If we number the processors, we can envision this algorithm for data movement as follows. In
sequence. each odd numbered processor first broadcasts its left-most vertical line of data and then
its right-most vertical line of data. Then the even numbered processors do the same. This requires
data movement time equal to

(S) 2(N2 k kT) T Nk seconds.

However. the compute time (for the N-block tridiagonal part.) is given by

20N 2

(9) sk seconds,

yielding a total time of

1GNk 20N 2

(10) kT + b + seconds.

The graph of this expression (10) as a function of k is similar to the graph of Figure 1. However,
the asymptotic behavior of (10) as k increases is significantly worse than that of (3) because in (10)
k appears in the numerator of the data transfer term as well as the startups term while in (3) it

appears in the numerator of only the startups term. Moreover, the data transfer term is likely to
be more important than the startups term.

However, now the story is quite different from the split step algorithm. When we do the data
movement of the previous algorithm using the nearest neighbor connection links instead of the

broadcast bus, we can use all the links in parallel and hence the time to move the data is given by

(11) 2T + seconds,
C

4

Page 9

and the runing time is given by
16NT 20N2

(12) 2T + -+ seconds.(1)c sk

tv-al I

,me

k
Figure 2

which is pictured in Figure 2 and is monotonically decreasing in k. As before we give some explicit
examples with N = 1024.
1. VAX with FPS-164s: T = 3 x 10- 3, b = 0.3 x 106, s= 10 X 106 (using the bus).

16000k 3000k 20 x 106
TOTAL TIME = 0 + seconds.0.3 X 106 + 1_j03 +l0x 106 x k

2
24k + 2 seconds.

Hence, kopt f 6 and (TOTAL TIME)o,, s 0.6 seconds.

2. APTEC BUS and FPS-164s: T = 3 x 10- , b = 3 x 106, s -10 x 106 (using the bus).

Now k,,p t 30 and (TOTAL TIME)op, ; 0.15 seconds.

4 3. ELI CIRCUS using nearest neighbor direct links: c = 20 x 106

16 x 1000 20 x 106
TOTAL TIME 20 + 10 X 106 X k seconds

2
T seconds.

Hence, k - 100 implies a TOTAL TIME 0.02 seconds.

6. Summary
The solution of the 3-dimensional parabolic approximation is computation intensive. The

algorithm of choice on a multi-processor system is very dependent on the system architecture.
For bus-based architectures the split step Fourier method is likely to be superior to explicit finite
difference methods while on a ring-based machine with independent nearest neighbor interconnects,
the opposite is probably true.

Furthermore, for reasonable system parameters we are likely to see almost linear speedups for
small to moderate number of processors. However, for bus-based architectures the running time
will eventually start to increase as the number of processors is increased.

:1KI
• , '" . . "1

* Pa-e 10

References
(I,' T.F. Chan. Ding Lee. Long un Sheii. Stable Explicit Schemes for Equations of the Schridinger

Type. Technical Pleport YAkLEU/DC/TR.305. Dept. of Computer Science. Yale Univ..,

C74 (19S4).
2"Ding Lee. The State-of-the, Art Parabolic Equation Approximation as applied to Underwater

Acoustic Propagation with Discussions on Intensive Computations., Technical Report
NUSC/7247, NUSC, (1984).

[31' F.D. Tappert. The parabolic equation approximation method, Lecture Notes in Physics. Springer-
\'erlag. Heidelberg, 70 (1977).

[4) Analysis of the Split-Step Algorithm for Parabolic Wave Equation, These Proceedings,

FILMED

5-85

DTIC

